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Abstract

An autoregressive model for forecasting wind velocity is implemented and characterized.

Autoregression is a well-established method for short-term (intraday) time-series forecasting of

wind velocity, but the performance of the model depends on the temporal characteristics of the

winds. Given a time-series dataset of past wind velocities, an autocorrelation is computed and

used to determine relevant timescales over which past wind velocities might be useful predictors

of future data. Subsequently, an autoregressive model is implemented and its performance is

compared, in terms of a prediction error, to the performances of two simpler predictive models:

persistence and a random sample. Additionally, the performance of the autoregressive model is

characterized by examining the dependence of the incurred prediction errors on season and on

time of day. Results of the timescale analysis suggest that the wind system will tend to “forget”

previous wind conditions after approximately 5.5 days. Indeed, performance results show that,

while the autoregressive model consistently outperforms the alternative models, it reaches a

plateau in prediction error over approximately that timescale. The autoregressive model is also

shown to yield significantly more accurate predictions in the Summer than in the Winter, and

slightly more accurate predictions during the day than at night.

i



CEE 588 Princeton University J. G. Tylka

Contents

1 Introduction 1

2 Review of Mathematical Theory 2

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Pairwise Statistics Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.1 Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.2 Random Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.3 Autoregression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Methodology 5

3.1 Timescale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Comparison of Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.2 Dependence on Season and on Time of Day . . . . . . . . . . . . . . . . . . . 7

4 Results and Discussion 7

4.1 Timescale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.1 Comparison of Forecasting Models . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.2 Dependence on Season and on Time of Day . . . . . . . . . . . . . . . . . . . 10

5 Summary and Conclusions 11

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

References 13

ii



CEE 588 Princeton University J. G. Tylka

List of Figures

1 Normalized autocorrelation sequences RUU (blue curve) and RV V (red). The filled

regions correspond to the summations computed in Eq. (11) to find the integral

timescales TU and TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Comparison of RMS prediction errors incurred by the persistence (blue curve), ran-

dom sample (red), and autoregressive (green) models for predictions up to 12 hours.

The horizontal dashed red line indicates the average (mean) value of the RMS error

for the random sample model (equal to approximately 12.5 m/s). . . . . . . . . . . . 10

3 Comparison of RMS prediction errors incurred by each model for predictions up to

30 days. The vertical dashed lines indicate 2 and 5.5 days. See Fig. 2 for more details. 11

4 Comparison of RMS prediction errors incurred by each model for predictions up to

365 days. For clarity, the data have been smoothed by computing a 48-hour moving

average. See Fig. 2 for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Prediction errors incurred by the autoregressive model in each season. The vertical

dashed lines indicate 2 and 5.5 days. Here, “Winter” (blue curve) refers to December

through February; “Spring” (green) refers to March through May; “Summer” (red)

refers to June through August; and “Fall” (yellow) refers to September through

November. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Prediction errors incurred by the autoregressive model under daytime and nighttime

conditions. For daytime predictions (red curve), t = 0 corresponds to 8AM, while

for nighttime predictions (blue), t = 0 corresponds to 8PM. . . . . . . . . . . . . . . 14

iii



CEE 588 Princeton University J. G. Tylka

1 Introduction

In order to facilitate the integration of wind energy into the power grid, reliable methods of forecast-

ing wind power are required. Existing forecasting methods generally take a statistical, physical, or

combined approach [1]. For short-term (intraday) predictions, statistical approaches, such as direct

time-series forecasting, are often preferred. Several such methods are reviewed by Giebel et al. [2,

Chap. 2]. For longer-term predictions, physics-based numerical weather prediction (NWP) models

are often preferred, or at least included in a combined approach, as such models have been shown

to outperform time-series forecasts beyond about 6 hours ahead [2, Sec. 1.3].

It is well-established that modern weather forecasting models, which tend to employ a com-

bination of statistical and physical models, can only accurately forecast about 5–7 days into the

future [2, Sec. 1.2]. For time-series forecasting models such as an autoregression, whose predictions

draw heavily on recent data, the upper limit on how far ahead such models can accurately predict

is likely related to the timescale over which the wind system “forgets” about previous conditions.

Consequently, the primary objective of the present work is to empirically determine this timescale

and characterize the time-domain performance of an autoregressive model.

Brown et al. [3] first proposed using an autoregressive model to forecast wind speed and power,

but found that their model only yields accurate predictions up to about 3 hours ahead. On a

similar timescale, Landberg and Watson [4] found that persistence models, which model future

wind conditions as identical to the most recent measurement, tend to outperform their NWP model

up to about 6 hours ahead. Numerous other studies, many of which are reviewed by Giebel et al.

[2, Sec. 2.1], have demonstrated that autoregressive (or, more generally, autoregressive moving-

average) models can be optimized to outperform persistence over most, if not all, timescales. In

view of these findings, here, we use persistence as a benchmark against which to compare the

forecasting accuracy of the autoregressive model.

In order to determine the timescales over which an autoregressive model can be expected to

perform well, we analyze the autocorrelation of a dataset of historical wind velocities. We then

implement an autoregressive model, the parameters of which (i.e., the autoregression coefficients)

are computed using these same historical wind data, and evaluate it using the same dataset but
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for a distinct (i.e., non-overlapping) time period. This evaluation consists of randomly selecting

segments of measured wind data as an input to the model, and comparing the predictions of the

model to the measured data immediately following the input segment. The performance of the

autoregressive model is then compared, over various prediction timescales, to the performances of

two simpler predictive models: persistence and a random sample. Additionally, the performance

of the autoregressive model is further characterized by examining the dependence of the incurred

prediction errors on season and on time of day.

The rest of this report is organized as follows. In Sec. 2, we review the mathematical theory

used in this work as well as several forecasting models. Next, in Sec. 3, we describe the analyses

conducted in order to determine relevant timescales and to characterize the performance of each

forecasting model. In Sec. 4, we present and discuss the results of these analyses, and finally, in

Sec. 5, we summarize this work and draw conclusions from the results.

2 Review of Mathematical Theory

In this section we first formulate the time-series forecasting problem. We then review four pairwise

(i.e., “two-point”) statistics functions: the cross- and autocorrelation and cross- and autocovariance

functions. Finally, we review three forecasting models that we implement and evaluate in this work.

2.1 Problem Formulation

Consider the stream-wise and cross-stream wind velocities, u(t) and v(t), respectively, sampled at

times tn for all integers n with a sampling rate Fs, such that tn = n/Fs. For simplicity, we consider

tn < 0 to be the “past” and tn ≥ 0 to be the “future.” We write the wind velocity as a complex

variable, z(t) = u(t) + iv(t), where i is the imaginary unit, and denote the sampled wind data by

zn = z(tn). The goal of time-series forecasting of wind velocity is to use past wind data, say Nin

previous samples, to predict Nout future samples. That is, we seek a set of forecasting functions fn

such that

zn = fn(z−1, z−2, . . . , z−Nin), for all n ∈ [0, Nout − 1]. (1)
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2.2 Pairwise Statistics Functions

Consider two (possibly complex-valued) sequences Xn, Yn, for all integers n ∈ [0, N − 1]. An

unbiased estimate of the cross-correlation of these sequences is given by1

RXY (m) =


1

N −m

N−m−1∑
n=0

Xn+mYn, for m ≥ 0,

RY X(−m), for m < 0,

(2)

for all integers m ∈ [−(N − 1), N − 1], where (·) denotes taking the complex conjugate of the

argument. Furthermore, the autocorrelation of a single sequence, Xn, is given by RXX(m). Note

that this definition differs from that given by Stull [5, Sec. 8.2.1], in which the mean of the sequence

is removed (cf. Eq. (3) below) and a different normalization is used.

Similarly, an unbiased estimate of the cross-covariance of Xn and Yn is given by2

CXY (m) =


1

N −m

N−m−1∑
n=0

(Xn+m − 〈X〉)
(
Yn −

〈
Y
〉)
, for m ≥ 0,

CY X(−m), for m < 0,

, (3)

where 〈·〉 denotes taking the mean, i.e.,

〈X〉 =
1

N

N−1∑
n=0

Xn. (4)

Note that the cross-covariance is related to the cross-correlation by CXY (m) = RδXδY (m), where

δXn = Xn − 〈X〉 and δYn = Yn − 〈Y 〉 represent each sequence’s deviation from its mean, and the

autocovariance of Xn is given by CXX(m) = RδXδX (m).

2.3 Forecasting Models

In this section we review three forecasting models used in this work. Here, we denote the measured

wind velocity by zn and the predicted wind velocity by z′n.

1See: https://www.mathworks.com/help/signal/ref/xcorr.html
2See: https://www.mathworks.com/help/signal/ref/xcov.html
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2.3.1 Persistence

One well-established yet inherently limited forecasting model is known as the “persistence” model

[2, Sec. 1.5], wherein all future wind velocities are taken to be equal to the most recent wind velocity

sample, i.e.,

z′n = z−1, for all n ∈ [0, Nout − 1]. (5)

Given this model’s construction, we can expect (and indeed we will see in Sec. 4.2.1) that the

prediction errors incurred by this model will be small in the very short-term, but will increase

rapidly with increasing time.

2.3.2 Random Sample

Given a database of historical wind velocities, ζm, for all integers m ∈ [0,M−1], we randomly select

a segment of Nout consecutive samples as the predicted future data. That is, for some randomly

selected integer r ∈ [0,M −Nout], we take

z′n = ζr+n, for all n ∈ [0, Nout − 1]. (6)

For this model, we can expect (and again we will see in Sec. 4.2.1) that the prediction errors will

be large and, on average, relatively constant with time, as the randomly selected segment is likely

uncorrelated with the true future data.

2.3.3 Autoregression

An autoregressive model of order P uses a linear combination of the P most recent time samples

to predict the following one. In general, this can be written as

z′n =
P∑
p=1

φpzn−p, (7)

where φp are the autoregression coefficients for all integers p ∈ [1, P ]. In practice, this formula is

applied successively to predict z′0, then z′1, then z′2, and so forth. Note that, in contrast to much

of the existing literature, this formulation simultaneously forecasts wind speed and direction (i.e.,

wind velocity), whereas often only the wind speed is considered [3, for example].
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Here, we compute the autoregression coefficients using a database of historical wind data ζm

for all integers m ∈ [0,M − 1]. According to the Yule-Walker equations and provided that P < M ,

the autoregression coefficients are given by [6, Sec. 3.1.1]
Cζζ(1)

Cζζ(2)
...

Cζζ(P )

 =


Cζζ(0) Cζζ(−1) · · · Cζζ(−P + 1)

Cζζ(1) Cζζ(0) · · · Cζζ(−P + 2)
...

...
. . .

...

Cζζ(P − 1) Cζζ(P − 2) · · · Cζζ(0)

 ·

φ1

φ2
...

φP

 , (8)

where Cζζ is computed using Eq. (3).

Similar to the persistence model, we can expect (and again we will see in Sec. 4.2.1) that the

prediction errors incurred by this model will be small in the very short-term, but will then increase

with increasing time as the wind system “forgets” about the previous wind conditions.

3 Methodology

In this work, we use a database of wind velocity measurements from the Cabauw meteorological

tower,3 which is a 213 m tall tower that has been recording, since 1986, the horizontal wind speed

and direction at several vertical heights [7, Table I]. These wind speeds and directions are measured

using a combination of cup and sonic anemometers and weather vanes [8, Sec. 2.1]. We perform

a pairwise statistical analysis of this data to determine relevant timescales, and subsequently, we

implement and characterize the three forecasting models reviewed in Sec. 2.3.

As our historical “training” dataset, ζm, we use the wind velocity data measured at 200 m from

January 1st, 2001, until (and including) December 31st, 2010. These data are given at a sampling

rate of Fs = 6 samples per hour. As a pre-processing step, we first determine a nominal “average”

direction for the wind. To do this, we compute the wind direction θm = arg(ζm), where arg(·)

denotes taking the argument (i.e., phase angle) of a complex number, such that ζm = |ζm|eiθm . We

then compute a histogram of these θm, with a bin width of 3◦, and subsequently find the peak of

this histogram, which, for these data, occurs at θ̂ = −130.5◦. We then realign the training dataset

3Available for download here: http://www.cesar-database.nl/Welcome.do
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and all other wind data used hereafter by computing

ζ̂m = ζme
−iθ̂ and ẑn = zne

−iθ̂. (9)

3.1 Timescale Analysis

In order to determine the timescales over which an autoregressive model can be expected to perform

well, we compute the autocorrelations of both Um and Vm, where ζm = Um + iVm. From these

autocorrelation sequences, we define an integral timescale, TX (where X can be replaced by either

U or V ), given by [9]

TX =

M−1∑
m=0

RXX(m)∆t, (10)

where ∆t = 1/Fs.
4 However, in practice, we may choose to sum only over Mmax samples, where

Mmax < M and is chosen based on when RXX reaches a sufficiently small value. Here, we choose

Mmax as the point at which RXX reaches its “steady-state” value, R̃XX .

Note that an autocorrelation sequence may have a non-zero steady-state value when, for ex-

ample, the sequence X is sufficiently consistent such that its autocorrelation remains relatively

constant over a wide range of m. In such cases, we use a modified form of Eq. (10), such that TX

is given by

TX ≈
1

1− R̃XX

Mmax−1∑
m=0

(RXX(m)− R̃XX)∆t. (11)

Note that if R̃XX = 0, then Eq. (11) reduces to the unmodified Eq. (10).

3.2 Performance Characterization

In order to characterize the performance of the autoregressive model, we first compare its perfor-

mance to the performances of the other forecasting models reviewed in Sec. 2.3. Subsequently, we

investigate the dependence of the prediction errors incurred by the autoregressive model on season

and on time of day.

4Also see: https://en.wikipedia.org/wiki/Integral_length_scale
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3.2.1 Comparison of Forecasting Models

For each of the forecasting models reviewed in Sec. 2.3, we compute an incurred prediction error.

To do this, we randomly select test segments of measured wind data from an “evaluation” dataset,

for which we use the Cabauw wind data from January 1st, 2011, until (and including) December

31st, 2017. Each test segment is Nin + Nout samples long, where the first Nin samples are given

as an input to each model, and the following Nout samples serve as a reference against which each

model’s prediction is compared. We then compute the prediction error, εn = zn−z′n, for all integers

n ∈ [0, Nout−1], where zn and z′n are the true (reference) and predicted wind velocities, respectively.

We perform this calculation for Q randomly selected test segments, and compute the root-mean-

square (RMS) magnitude error over all test segments, given by

εn =

√√√√ 1

Q

Q∑
q=1

∣∣∣ε(q)n ∣∣∣2, (12)

where ε
(q)
n is the prediction error for the qth test segment.

3.2.2 Dependence on Season and on Time of Day

To investigate the seasonal dependence of the prediction errors, we repeat a very similar analysis

to that described above in Sec. 3.2.1, but restrict the randomly selected test segments to be from

a given season. In particular, we ensure that the entire test segment is contained within the same

season. Here, we use “Winter” to refer to December through February; “Spring” refers to March

through May; “Summer” refers to June through August; and “Fall” refers to September through

November. Similarly, to investigate the dependence on the time of day, we restrict the randomly

selected test segments such that the reference wind velocity segments are no longer than 12 hours

and are either “daytime” (starting at 8AM) or “nighttime” (starting at 8PM) segments.

4 Results and Discussion

In this section we present and discuss the results of the analyses described above.
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4.1 Timescale Analysis

In Fig. 1, we plot the autocorrelation sequences RUU (m) and RV V (m) (for the stream-wise and

cross-stream wind components, respectively), which have been normalized such that RUU (0) =

RV V (0) = 1. By averaging over the widest “flat” portion of each sequence, the “steady-state”

values of these sequences are found to be approximately R̃UU = 0.1 and R̃V V = 0. From the plot,

we see that RUU reaches its steady-state value after approximately 70 days, while RV V reaches

its steady-state value after only approximately 15 days. Choosing Mmax as the first (i.e., smallest

positive) value of m at which RXX(m) < R̃XX , we compute, using Eq. (11), the timescales TU

and TV . For each curve in Fig. 1, the area between R̃XX and RXX(m) is shaded for m < Mmax,

representing the value of the summation in Eq. (11).

RVV

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Time Lag (days)

A
u
to
c
o
rr
e
la
ti
o
n

Figure 1: Normalized autocorrelation sequences RUU (blue curve) and RV V (red). The filled regions

correspond to the summations computed in Eq. (11) to find the integral timescales TU and TV .

For these data, we find that the timescales computed via Eq. (11) are TU ≈ 5.44 days and

TV ≈ 1.71 days. These values suggest that the stream-wise winds tend to remain correlated for

∼ 5.5 days, while the cross-stream winds remain correlated for only ∼ 2 days. Consequently, we can

expect the errors incurred by the autoregressive and persistence models to attain relatively constant
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values after ∼ 5.5 days, since, after that time, the wind conditions are essentially uncorrelated with

the previous ones. This timescale corresponds well with the previously mentioned limitation of

modern weather forecasting models, which are only able to accurately forecast about 5–7 days into

the future [2, Sec. 1.2].

4.2 Performance Characterization

Here, we construct an autoregressive model, as described in Sec. 2.3.3, with an order P correspond-

ing to 2 days, i.e., P = 2× 24Fs, where Fs is given in samples per hour. In each analysis below, we

take Nin = 2× 24Fs input samples and we compute, using Eq. (12), the RMS error over Q = 100

test segments.

4.2.1 Comparison of Forecasting Models

The RMS prediction errors incurred by each forecasting model are plotted in Fig. 2 for a forecast

duration of 12 hours (i.e., Nout = 12Fs). From this plot, we see that the autoregressive model

performs comparably to, if not slightly better than, persistence over almost the entire forecast

duration. As expected, we see that the RMS errors incurred by the random sample model are

approximately constant with time.

In Fig. 3, we again plot the RMS prediction errors incurred by each model, now for a forecast

duration of 30 days (i.e., Nout = 30 × 24Fs). From this plot, we see that, beyond about 1 day,

the autoregressive model consistently outperforms persistence. Additionally, we see that the errors

incurred by the persistence model are small at small tn, but ultimately reach similar values to those

incurred by the random sample model. We interpret this behavior as corresponding to the system

“forgetting” about the previous wind conditions, and, in particular, we see that this happens when

tn ≈ TU ∼ 5.5 days.

Similarly, we see that the autoregressive model reaches a plateau in RMS error beyond TU .

However, these errors are still smaller than those of the persistence and random sample models.

This suggests that, even though the system has “forgotten” about the previous wind conditions,

the autoregressive model is still able to achieve predictions that are, on average, slightly more
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Figure 2: Comparison of RMS prediction errors incurred by the persistence (blue curve), random

sample (red), and autoregressive (green) models for predictions up to 12 hours. The horizontal

dashed red line indicates the average (mean) value of the RMS error for the random sample model

(equal to approximately 12.5 m/s).

accurate than the totally independent predictions produced by the alternative models. As shown

in Fig. 4, these plateaus remain constant even when forecasting up to 365 days into the future (i.e.,

Nout = 365× 24Fs).

4.2.2 Dependence on Season and on Time of Day

The RMS prediction errors incurred in each season by the autoregressive model are plotted in Fig. 5.

From this plot, we see that the errors are smallest in the Summer and largest in the Winter. This

suggests that wind conditions in Spring and Summer tend to be “more predictable” than those

in Fall or Winter. Recall that the model coefficients used here were computed using 10 years of

continuous data (see Sec. 3), which likely yielded “average” model coefficients that are generally

suitable for all seasons, but not ideal for any season. Consequently, that there exists a significant

seasonal dependence in the observed errors suggests that one approach to reduce these errors might

be to compute and employ different model coefficients for each season.
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Figure 3: Comparison of RMS prediction errors incurred by each model for predictions up to 30

days. The vertical dashed lines indicate 2 and 5.5 days. See Fig. 2 for more details.

The RMS prediction errors incurred under daytime and nighttime conditions by the autoregres-

sive model are plotted in Fig. 6. From this plot, we see that the prediction errors incurred during

the day are usually slightly smaller than those incurred at night. This is somewhat surprising, as we

might expect nighttime conditions to be “more predictable” due to the stability of the atmospheric

boundary layer [5, Fig. 1.7]. However, these results suggest that the autoregressive model may be

better able to predict daytime wind conditions given data from the previous night, than it is to

predict nighttime wind conditions given data from the previous day.

5 Summary and Conclusions

In this work we implemented and characterized the performance of an autoregressive model for

wind velocity forecasting. We first determined the relevant timescales over which an autoregressive

model can be expected to perform well by analyzing the autocorrelation of a dataset of historical

wind data. Subsequently, we compared, over various timescales and in terms of an RMS prediction

error, the performance of the autoregressive model to the performances of two simpler predictive
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Figure 4: Comparison of RMS prediction errors incurred by each model for predictions up to 365

days. For clarity, the data have been smoothed by computing a 48-hour moving average. See Fig. 2

for more details.

models: persistence and a random sample. Additionally, we examined the dependence of the

incurred prediction errors on season and on time of day.

Results of the timescale analysis suggest that the wind system will tend to “forget” previous

wind conditions after approximately 5.5 days (see Sec. 4.1). Indeed, results show that, while the

autoregressive model consistently outperforms the simpler alternative models, it reaches a plateau

in prediction error over approximately that timescale (see Fig. 3). The autoregressive model was

also found to yield more accurate predictions in the Summer than in the Winter (see Fig. 5), which

suggests that wind conditions in the Summer may be more consistent and “predictable” as a result.

Daytime predictions of wind velocity were also found to be slightly more accurate than nighttime

predictions (see Fig. 6), although this discrepancy does not appear to be significant.
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Figure 5: Prediction errors incurred by the autoregressive model in each season. The vertical

dashed lines indicate 2 and 5.5 days. Here, “Winter” (blue curve) refers to December through

February; “Spring” (green) refers to March through May; “Summer” (red) refers to June through

August; and “Fall” (yellow) refers to September through November.

5.1 Future Work

Future investigations should include an implementation of more sophisticated autoregressive mod-

els. For example, seasonal [6, Sec. 3.1.6] or Markov-switching [10] autoregressive approaches, in

which the autoregression coefficients vary with season, can be expected to achieve improved per-

formance under each condition. Additionally, the performance of the autoregressive model should

be compared to numerical weather prediction models, such the Weather Research and Forecasting

model,5 which have been shown to outperform persistence beyond about 6 hours ahead [2, 4].

5Available for download here: https://www.mmm.ucar.edu/weather-research-and-forecasting-model
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Figure 6: Prediction errors incurred by the autoregressive model under daytime and nighttime

conditions. For daytime predictions (red curve), t = 0 corresponds to 8AM, while for nighttime

predictions (blue), t = 0 corresponds to 8PM.
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